Neural Networks

About Neural Networks


Neural networks extract identifying features from data, lacking pre-programmed understanding. Network components include neurons, connections, weights, biases, propagation functions, and a learning rule. Neurons receive inputs, governed by thresholds and activation functions. Connections involve weights and biases regulating information transfer. Learning, adjusting weights and biases, occurs in three stages: input computation, output generation, and iterative refinement enhancing the network’s proficiency in diverse tasks.

Neural networks, also known as artificial neural networks (ANNs) or simulated neural networks (SNNs), are a subset of machine learning and are at the heart of deep learning algorithms. Their name and structure are inspired by the human brain, mimicking the way that biological neurons signal to one another.


  1. The neural network is simulated by a new environment.
  2. Then the free parameters of the neural network are changed as a result of this simulation.
  3. The neural network then responds in a new way to the environment because of the changes in its free parameters.


Importance of Neural Networks

The ability of neural networks to identify patterns, solve intricate puzzles, and adjust to changing surroundings is essential. Their capacity to learn from data has far-reaching effects, ranging from revolutionizing technology like natural language processing and self-driving automobiles to automating decision-making processes and increasing efficiency in numerous industries. The development of artificial intelligence is largely dependent on neural networks, which also drive innovation and influence the direction of technology.


Working of a Neural Network

Neural networks are complex systems that mimic some features of the functioning of the human brain. It is composed of an input layer, one or more hidden layers, and an output layer made up of layers of artificial neurons that are coupled. The two stages of the basic process are called backpropagation and forward propagation.



Forward Propagation

  • Input Layer: Each feature in the input layer is represented by a node on the network, which receives input data.


  • Weights and Connections: The weight of each neuronal connection indicates how strong the connection is. Throughout training, these weights are changed.


  • Hidden Layers: Each hidden layer neuron processes inputs by multiplying them by weights, adding them up, and then passing them through an activation function. By doing this, non-linearity is introduced, enabling the network to recognize intricate patterns.


  • Output: The final result is produced by repeating the process until the output layer is reached.



Types of Neural Networks


  • Feedforward Neteworks: A feedforward neural network is a simple artificial neural network architecture in which data moves from input to output in a single direction. It has input, hidden, and output layers; feedback loops are absent. Its straightforward architecture makes it appropriate for a number of applications, such as regression and pattern recognition.


  • Multilayer Perceptron (MLP): MLP is a type of feedforward neural network with three or more layers, including an input layer, one or more hidden layers, and an output layer. It uses nonlinear activation functions.


  • Convolutional Neural Network (CNN): A Convolutional Neural Network (CNN) is a specialized artificial neural network designed for image processing. It employs convolutional layers to automatically learn hierarchical features from input images, enabling effective image recognition and classification. CNNs have revolutionized computer vision and are pivotal in tasks like object detection and image analysis.


  • Recurrent Neural Network (RNN): An artificial neural network type intended for sequential data processing is called a Recurrent Neural Network (RNN). It is appropriate for applications where contextual dependencies are critical, such as time series prediction and natural language processing, since it makes use of feedback loops, which enable information to survive within the network.


  • Long Short-Term Memory (LSTM): LSTM is a type of RNN that is designed to overcome the vanishing gradient problem in training RNNs. It uses memory cells and gates to selectively read, write, and erase information.

Date : 07 Oct, 2023

  • Neural Networks

Enquiry Form

Full Name*

Course Interested in*


Phone Number*


Present State*

Other Latest Events